Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Cancer ; 154(9): 1652-1668, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180088

RESUMO

Patients with myelodysplastic neoplasms (MDS) are classified according to the risk of acute myeloid leukemia transformation. Some lower-risk MDS patients (LR-MDS) progress rapidly despite expected good prognosis. Using diagnostic samples, we aimed to uncover the mechanisms of this accelerated progression at the transcriptome level. RNAseq was performed on CD34+ ribodepleted RNA samples from 53 LR-MDS patients without accelerated progression (stMDS) and 8 who progressed within 20 months (prMDS); 845 genes were differentially expressed (ІlogFCІ > 1, FDR < 0.01) between these groups. stMDS CD34+ cells exhibited transcriptional signatures of actively cycling, megakaryocyte/erythrocyte lineage-primed progenitors, with upregulation of cell cycle checkpoints and stress pathways, which presumably form a tumor-suppressing barrier. Conversely, cell cycle, DNA damage response (DDR) and energy metabolism-related pathways were downregulated in prMDS samples, whereas cell adhesion processes were upregulated. Also, prMDS samples showed high levels of aberrant splicing and global lncRNA expression that may contribute to the attenuation of DDR pathways. We observed overexpression of multiple oncogenes and diminished differentiation in prMDS; the expression of ZEB1 and NEK3, genes not previously associated with MDS prognosis, might serve as potential biomarkers for LR-MDS progression. Our 19-gene DDR signature showed a significant predictive power for LR-MDS progression. In validation samples (stMDS = 3, prMDS = 4), the key markers and signatures retained their significance. Collectively, accelerated progression of LR-MDS appears to be associated with transcriptome patterns of a quiescent-like cell state, reduced lineage differentiation and suppressed DDR, inherent to CD34+ cells. The attenuation of DDR-related gene-expression signature may refine risk assessment in LR-MDS patients.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Humanos , Transcriptoma , Adesão Celular , Síndromes Mielodisplásicas/genética , Ciclo Celular , Reparo do DNA , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo
2.
J Neuroinflammation ; 20(1): 299, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098019

RESUMO

BACKGROUND: The neurological effects of the coronavirus disease of 2019 (COVID-19) raise concerns about potential long-term consequences, such as an increased risk of Alzheimer's disease (AD). Neuroinflammation and other AD-associated pathologies are also suggested to increase the risk of serious SARS-CoV-2 infection. Anosmia is a common neurological symptom reported in COVID-19 and in early AD. The olfactory mucosa (OM) is important for the perception of smell and a proposed site of viral entry to the brain. However, little is known about SARS-CoV-2 infection at the OM of individuals with AD. METHODS: To address this gap, we established a 3D in vitro model of the OM from primary cells derived from cognitively healthy and AD individuals. We cultured the cells at the air-liquid interface (ALI) to study SARS-CoV-2 infection under controlled experimental conditions. Primary OM cells in ALI expressed angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and several other known SARS-CoV-2 receptor and were highly vulnerable to infection. Infection was determined by secreted viral RNA content and confirmed with SARS-CoV-2 nucleocapsid protein (NP) in the infected cells by immunocytochemistry. Differential responses of healthy and AD individuals-derived OM cells to SARS-CoV-2 were determined by RNA sequencing. RESULTS: Results indicate that cells derived from cognitively healthy donors and individuals with AD do not differ in susceptibility to infection with the wild-type SARS-CoV-2 virus. However, transcriptomic signatures in cells from individuals with AD are highly distinct. Specifically, the cells from AD patients that were infected with the virus showed increased levels of oxidative stress, desensitized inflammation and immune responses, and alterations to genes associated with olfaction. These results imply that individuals with AD may be at a greater risk of experiencing severe outcomes from the infection, potentially driven by pre-existing neuroinflammation. CONCLUSIONS: The study sheds light on the interplay between AD pathology and SARS-CoV-2 infection. Altered transcriptomic signatures in AD cells may contribute to unique symptoms and a more severe disease course, with a notable involvement of neuroinflammation. Furthermore, the research emphasizes the need for targeted interventions to enhance outcomes for AD patients with viral infection. The study is crucial to better comprehend the relationship between AD, COVID-19, and anosmia. It highlights the importance of ongoing research to develop more effective treatments for those at high risk of severe SARS-CoV-2 infection.


Assuntos
Doença de Alzheimer , COVID-19 , Humanos , SARS-CoV-2 , Anosmia/metabolismo , Doenças Neuroinflamatórias , Doença de Alzheimer/metabolismo , Mucosa Olfatória/metabolismo
3.
Environ Toxicol Pharmacol ; 104: 104316, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37981204

RESUMO

This study evaluated how exposure to the ubiquitous air pollution component, ultrafine particles (UFPs), alters the olfactory bulb (OB) transcriptome. The study utilised a whole-body inhalation chamber to simulate real-life conditions and focused on UFPs due to their high translocation and deposition ability in OBs as well as their prevalence in ambient air. Female C57BL/6J mice were exposed to clean air or to freshly generated combustion derived UFPs for two weeks, after which OBs were dissected and mRNA transcripts were investigated using RNA sequencing analysis. For the first time, transcriptomics was applied to determine changes in mRNA expression levels occurring after subacute exposure to UFPs in the OBs. We found forty-five newly described mRNAs to be involved in air pollution-induced responses, including genes involved in odorant binding, synaptic regulation, and myelination signalling pathway, providing new gene candidates for future research. This study provides new insights for the environmental science and neuroscience fields and nominates future research directions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Camundongos , Animais , Feminino , Bulbo Olfatório/química , Bulbo Olfatório/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Transcriptoma , Camundongos Endogâmicos C57BL , Poluição do Ar/análise , Material Particulado/toxicidade , Material Particulado/análise , Perfilação da Expressão Gênica , Biomarcadores/metabolismo , RNA Mensageiro/metabolismo , Tamanho da Partícula
4.
Sci Total Environ ; 905: 167038, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37709087

RESUMO

Ultrafine particles (UFP) with a diameter of ≤0.1 µm, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain. Mounting evidence suggests that pollutant particles affect the brain through the olfactory tract, however, the exact cellular mechanisms of how the OM responds to air pollutants remain poorly known. Here we show that the responses of primary human OM cells are altered upon exposure to UFPs and that different fuels and engines elicit different adverse effects. We used UFPs collected from exhausts of a heavy-duty-engine run with renewable diesel (A0) and fossil diesel (A20), and from a modern diesel vehicle run with renewable diesel (Euro6) and compared their health effects on the OM cells by assessing cellular processes on the functional and transcriptomic levels. Quantification revealed all samples as UFPs with the majority of particles being ≤0.1 µm by an aerodynamic diameter. Exposure to A0 and A20 induced substantial alterations in processes associated with inflammatory response, xenobiotic metabolism, olfactory signaling, and epithelial integrity. Euro6 caused only negligible changes, demonstrating the efficacy of aftertreatment devices. Furthermore, when compared to A20, A0 elicited less pronounced effects on OM cells, suggesting renewable diesel induces less adverse effects in OM cells. Prior studies and these results suggest that PAHs may disturb the inflammatory process and xenobiotic metabolism in the OM and that UFPs might mediate harmful effects on the brain through the olfactory route. This study provides important information on the adverse effects of UFPs in a human-based in vitro model, therefore providing new insight to form the basis for mitigation and preventive actions against the possible toxicological impairments caused by UFP exposure.


Assuntos
Poluentes Atmosféricos , Xenobióticos , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Mucosa Olfatória/química
5.
Mol Oncol ; 17(12): 2565-2583, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37408496

RESUMO

Mutations in the splicing factor 3b subunit 1 (SF3B1) gene are frequent in myelodysplastic neoplasms (MDS). Because the splicing process is involved in the production of circular RNAs (circRNAs), we investigated the impact of SF3B1 mutations on circRNA processing. Using RNA sequencing, we measured circRNA expression in CD34+ bone marrow MDS cells. We defined circRNAs deregulated in a heterogeneous group of MDS patients and described increased circRNA formation in higher-risk MDS. We showed that the presence of SF3B1 mutations did not affect the global production of circRNAs; however, deregulation of specific circRNAs was observed. Particularly, we demonstrated that strong upregulation of circRNAs processed from the zinc finger E-box binding homeobox 1 (ZEB1) transcription factor; this upregulation was exclusive to SF3B1-mutated patients and was not observed in those with mutations in other splicing factors or other recurrently mutated genes, or with other clinical variables. Furthermore, we focused on the most upregulated ZEB1-circRNA, hsa_circ_0000228, and, by its knockdown, we demonstrated that its expression is related to mitochondrial activity. Using microRNA analyses, we proposed miR-1248 as a direct target of hsa_circ_0000228. To conclude, we demonstrated that mutated SF3B1 leads to deregulation of ZEB1-circRNAs, potentially contributing to the defects in mitochondrial metabolism observed in SF3B1-mutated MDS.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Fatores de Processamento de RNA/genética , RNA Circular/genética , Síndromes Mielodisplásicas/genética , Mutação/genética , Fatores de Transcrição/genética , Fosfoproteínas/genética
6.
Leukemia ; 36(7): 1898-1906, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35505182

RESUMO

Patients with lower-risk myelodysplastic syndromes (LR-MDS) have a generally favorable prognosis; however, a small proportion of cases progress rapidly. This study aimed to define molecular biomarkers predictive of LR-MDS progression and to uncover cellular pathways contributing to malignant transformation. The mutational landscape was analyzed in 214 LR-MDS patients, and at least one mutation was detected in 137 patients (64%). Mutated RUNX1 was identified as the main molecular predictor of rapid progression by statistics and machine learning. To study the effect of mutated RUNX1 on pathway regulation, the expression profiles of CD34 + cells from LR-MDS patients with RUNX1 mutations were compared to those from patients without RUNX1 mutations. The data suggest that RUNX1-unmutated LR-MDS cells are protected by DNA damage response (DDR) mechanisms and cellular senescence as an antitumor cellular barrier, while RUNX1 mutations may be one of the triggers of malignant transformation. Dysregulated DDR and cellular senescence were also observed at the functional level by detecting γH2AX expression and ß-galactosidase activity. Notably, the expression profiles of RUNX1-mutated LR-MDS resembled those of higher-risk MDS at diagnosis. This study demonstrates that incorporating molecular data improves LR-MDS risk stratification and that mutated RUNX1 is associated with a suppressed defense against LR-MDS progression.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/patologia , Prognóstico
7.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456941

RESUMO

Olfactory function, orchestrated by the cells of the olfactory mucosa at the rooftop of the nasal cavity, is disturbed early in the pathogenesis of Alzheimer's disease (AD). Biometals including zinc and calcium are known to be important for sense of smell and to be altered in the brains of AD patients. Little is known about elemental homeostasis in the AD patient olfactory mucosa. Here we aimed to assess whether the disease-related alterations to biometal homeostasis observed in the brain are also reflected in the olfactory mucosa. We applied RNA sequencing to discover gene expression changes related to metals in olfactory mucosal cells of cognitively healthy controls, individuals with mild cognitive impairment and AD patients, and performed analysis of the elemental content to determine metal levels. Results demonstrate that the levels of zinc, calcium and sodium are increased in the AD olfactory mucosa concomitantly with alterations to 17 genes related to metal-ion binding or metal-related function of the protein product. A significant elevation in alpha-2-macroglobulin, a known metal-binding biomarker correlated with brain disease burden, was observed on the gene and protein levels in the olfactory mucosa cells of AD patients. These data demonstrate that the olfactory mucosa cells derived from AD patients recapitulate certain impairments of biometal homeostasis observed in the brains of patients.


Assuntos
Doença de Alzheimer , Oligoelementos , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Quelantes/metabolismo , Humanos , Mucosa Olfatória/metabolismo , Oligoelementos/metabolismo , Zinco/metabolismo
8.
Cancer Genomics Proteomics ; 19(2): 205-228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35181589

RESUMO

BACKGROUND/AIM: Prediction of response to azacitidine (AZA) treatment is an important challenge in hematooncology. In addition to protein coding genes (PCGs), AZA efficiency is influenced by various noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs), circular RNAs (circRNAs), and transposable elements (TEs). MATERIALS AND METHODS: RNA sequencing was performed in patients with myelodysplastic syndromes or acute myeloid leukemia before AZA treatment to assess contribution of ncRNAs to AZA mechanisms and propose novel disease prediction biomarkers. RESULTS: Our analyses showed that lncRNAs had the strongest predictive potential. The combined set of the best predictors included 14 lncRNAs, and only four PCGs, one circRNA, and no TEs. Epigenetic regulation and recombinational repair were suggested as crucial for AZA response, and network modeling defined three deregulated lncRNAs (CTC-482H14.5, RP11-419K12.2, and RP11-736I24.4) associated with these processes. CONCLUSION: The expression of various ncRNAs can influence the effect of AZA and new ncRNA-based predictive biomarkers can be defined.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , RNA Longo não Codificante , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Epigênese Genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , RNA Longo não Codificante/genética
9.
Int J Oncol ; 59(6)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34779490

RESUMO

Our current understanding of hematopoietic stem cell differentiation and the abnormalities that lead to leukemogenesis originates from the accumulation of knowledge regarding protein­coding genes. However, the possible impact of transposable element (TE) mobilization and the expression of P­element­induced WImpy testis­interacting RNAs (piRNAs) on leukemogenesis has been beyond the scope of scientific interest to date. The expression profiles of these molecules and their importance for human health have only been characterized recently due to the rapid progress of high­throughput sequencing technology development. In the present review, current knowledge on the expression profile and function of TEs and piRNAs was summarized, with specific focus on their reported involvement in leukemogenesis and pathogenesis of myelodysplastic syndrome.


Assuntos
Elementos de DNA Transponíveis , Síndromes Mielodisplásicas/patologia , RNA Interferente Pequeno/genética , Animais , Humanos , Síndromes Mielodisplásicas/genética
10.
Biosens Bioelectron ; 194: 113613, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536749

RESUMO

Microribonucleic acids (miRNAs) are short noncoding ribonucleic acids that have been linked with a multitude of human diseases including lung, breast, and hematological cancers. In this work, we present a novel, extremely sensitive assay for the label-free optical biosensor-based detection of miRNAs, which is based on the oligonucleotide-triggered release of nanoparticles from a sensor surface. We combine this assay (herein referred to as the nanoparticle-release (NPR) assay) with a surface plasmon resonance biosensor and show that the assay is able to enhance the specific sensor response associated with the binding of target miRNA while suppressing the interfering effects caused by the non-specific binding. We apply the assay to the detection of miRNAs related to myelodysplastic syndromes (miR-125b, miR-16) in blood plasma and demonstrate that the assay enables detection of miR-125b with a limit of detection (LOD) of 349 aM (corresponding to the lowest detectable amounts of 419 zmol). The achieved LOD is better by a factor of ∼100 when compared to the conventional nanoparticle-enhanced sandwich assay. Moreover, we demonstrate that the NPR assay may be combined with time-division multiplexing for the multiplexed miRNA detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Síndromes Mielodisplásicas , Humanos , MicroRNAs/genética , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Plasma
11.
Cancers (Basel) ; 13(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946220

RESUMO

To better understand the molecular basis of resistance to azacitidine (AZA) therapy in myelodysplastic syndromes (MDS) and acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), we performed RNA sequencing on pre-treatment CD34+ hematopoietic stem/progenitor cells (HSPCs) isolated from 25 MDS/AML-MRC patients of the discovery cohort (10 AZA responders (RD), six stable disease, nine progressive disease (PD) during AZA therapy) and from eight controls. Eleven MDS/AML-MRC samples were also available for analysis of selected metabolites, along with 17 additional samples from an independent validation cohort. Except for two patients, the others did not carry isocitrate dehydrogenase (IDH)1/2 mutations. Transcriptional landscapes of the patients' HSPCs were comparable to those published previously, including decreased signatures of active cell cycling and DNA damage response in PD compared to RD and controls. In addition, PD-derived HSPCs revealed repressed markers of the tricarboxylic acid cycle, with IDH2 among the top 50 downregulated genes in PD compared to RD. Decreased citrate plasma levels, downregulated expression of the (ATP)-citrate lyase and other transcriptional/metabolic networks indicate metabolism-driven histone modifications in PD HSPCs. Observed histone deacetylation is consistent with transcription-nonpermissive chromatin configuration and quiescence of PD HSPCs. This study highlights the complexity of the molecular network underlying response/resistance to hypomethylating agents.

12.
Cancers (Basel) ; 12(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977510

RESUMO

BACKGROUND: myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder with an incompletely known pathogenesis. Long noncoding RNAs (lncRNAs) play multiple roles in hematopoiesis and represent a new class of biomarkers and therapeutic targets, but information on their roles in MDS is limited. AIMS: here, we aimed to characterize lncRNAs deregulated in MDS that may function in disease pathogenesis. In particular, we focused on the identification of lncRNAs that could serve as novel potential biomarkers of adverse outcomes in MDS. METHODS: we performed microarray expression profiling of lncRNAs and protein-coding genes (PCGs) in the CD34+ bone marrow cells of MDS patients. Expression profiles were analyzed in relation to different aspects of the disease (i.e., diagnosis, disease subtypes, cytogenetic and mutational aberrations, and risk of progression). LncRNA-PCG networks were constructed to link deregulated lncRNAs with regulatory mechanisms associated with MDS. RESULTS: we found several lncRNAs strongly associated with disease pathogenesis (e.g., H19, WT1-AS, TCL6, LEF1-AS1, EPB41L4A-AS1, PVT1, GAS5, and ZFAS1). Of these, downregulation of LEF1-AS1 and TCL6 and upregulation of H19 and WT1-AS were associated with adverse outcomes in MDS patients. Multivariate analysis revealed that the predominant variables predictive of survival are blast count, H19 level, and TP53 mutation. Coexpression network data suggested that prognosis-related lncRNAs are predominantly related to cell adhesion and differentiation processes (H19 and WT1-AS) and mechanisms such as chromatin modification, cytokine response, and cell proliferation and death (LEF1-AS1 and TCL6). In addition, we observed that transcriptional regulation in the H19/IGF2 region is disrupted in higher-risk MDS, and discordant expression in this locus is associated with worse outcomes. CONCLUSIONS: we identified specific lncRNAs contributing to MDS pathogenesis and proposed cellular processes associated with these transcripts. Of the lncRNAs associated with patient prognosis, the level of H19 transcript might serve as a robust marker comparable to the clinical variables currently used for patient stratification.

13.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825172

RESUMO

Circular RNAs (circRNAs) constitute a recently recognized group of noncoding transcripts that function as posttranscriptional regulators of gene expression at a new level. Recent developments in experimental methods together with rapidly evolving bioinformatics approaches have accelerated the exploration of circRNAs. The differentiation of hematopoietic stem cells into a broad spectrum of specialized blood lineages is a tightly regulated process that depends on a multitude of factors, including circRNAs. However, despite the growing number of circRNAs described to date, the roles of the majority of them in hematopoiesis remain unknown. Given their stability and disease-specific expression, circRNAs have been acknowledged as novel promising biomarkers and therapeutic targets. In this paper, the biogenesis, characteristics, and roles of circRNAs are reviewed with an emphasis on their currently recognized or presumed involvement in hematopoiesis, especially in acute myeloid leukemia and myelodysplastic syndrome.


Assuntos
Biomarcadores Tumorais/sangue , Hematopoese , Leucemia Mieloide Aguda/sangue , Síndromes Mielodisplásicas/sangue , RNA Circular/sangue , Animais , Biomarcadores Tumorais/genética , Humanos , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , RNA Circular/genética
14.
Front Immunol ; 11: 423, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269565

RESUMO

The fate of transplanted kidneys is substantially influenced by graft quality, with transplantation of kidneys from elderly and expanded criteria donors (ECDs) associated with higher occurrence of delayed graft function, rejection, and inferior long-term outcomes. However, little is known about early molecular fingerprints of these events in different donor categories. Borderline changes represent the most frequent histological finding early after kidney transplantation. Therefore, we examined outcomes and transcriptomic profiles of early-case biopsies diagnosed as borderline changes in different donor categories. In this single-center, retrospective, observational study, we compared midterm outcomes of kidney transplant recipients with early borderline changes as a first pathology between ECD (n = 109), standard criteria donor (SCDs, n = 109), and living donor (LD, n = 51) cohorts. Intragraft gene expression profiling by microarray was performed in part of these ECD, SCD, and LD cohorts. Although 5 year graft survival in patients with borderline changes in early-case biopsies was not influenced by donor category (log-rank P = 0.293), impaired kidney graft function (estimated glomerular filtration rate by Chronic Kidney Disease Epidemiology Collaboration equation) at M3, 1, 2, and 3 years was observed in the ECD cohort (P < 0.001). Graft biopsies from ECD donors had higher vascular intimal fibrosis and arteriolar hyalinosis compared to SCD and LD (P < 0.001), suggesting chronic vascular changes. Increased transcripts typical for ECD, as compared to both LD and SCD, showed enrichment of the inflammatory, defense, and wounding responses and the ECM-receptor interaction pathway. Additionally, increased transcripts in ECD vs. LD showed activation of complement and coagulation and cytokine-cytokine receptor pathways along with platelet activation and cell cycle regulation. Comparative gene expression overlaps of ECD, SCD, and LD using Venn diagrams found 64 up- and 16 down-regulated genes in ECD compared to both LD and SCD. Shared increased transcripts in ECD vs. both SCD and LD included thrombospondin-2 (THBS2), angiopoietin-like 4 (ANGPTL4), collagens (COL6A3, COL1A1), chemokine CCL13, and interleukin IL11, and most significantly, down-regulated transcripts included proline-rich 35 (PRR35) and fibroblast growth factor 9. Early borderline changes in ECD kidney transplantation are characterized by increased regulation of inflammation, extracellular matrix remodeling, and acute kidney injury transcripts in comparison with both LD and SCD grafts.


Assuntos
Aloenxertos , Função Retardada do Enxerto/genética , Transplante de Rim/métodos , Doadores de Tecidos , Transcriptoma , Adulto , Aloenxertos/patologia , Aloenxertos/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
15.
Cells ; 9(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224889

RESUMO

Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders with large heterogeneity at the clinical and molecular levels. As diagnostic procedures shift from bone marrow biopsies towards less invasive techniques, circulating small noncoding RNAs (sncRNAs) have become of particular interest as potential novel noninvasive biomarkers of the disease. We aimed to characterize the expression profiles of circulating sncRNAs of MDS patients and to search for specific RNAs applicable as potential biomarkers. We performed small RNA-seq in paired samples of total plasma and plasma-derived extracellular vesicles (EVs) obtained from 42 patients and 17 healthy controls and analyzed the data with respect to the stage of the disease, patient survival, response to azacitidine, mutational status, and RNA editing. Significantly higher amounts of RNA material and a striking imbalance in RNA content between plasma and EVs (more than 400 significantly deregulated sncRNAs) were found in MDS patients compared to healthy controls. Moreover, the RNA content of EV cargo was more homogeneous than that of total plasma, and different RNAs were deregulated in these two types of material. Differential expression analyses identified that many hematopoiesis-related miRNAs (e.g., miR-34a, miR-125a, and miR-150) were significantly increased in MDS and that miRNAs clustered on 14q32 were specifically increased in early MDS. Only low numbers of circulating sncRNAs were significantly associated with somatic mutations in the SF3B1 or DNMT3A genes. Survival analysis defined a signature of four sncRNAs (miR-1237-3p, U33, hsa_piR_019420, and miR-548av-5p measured in EVs) as the most significantly associated with overall survival (HR = 5.866, p < 0.001). In total plasma, we identified five circulating miRNAs (miR-423-5p, miR-126-3p, miR-151a-3p, miR-125a-5p, and miR-199a-3p) whose combined expression levels could predict the response to azacitidine treatment. In conclusion, our data demonstrate that circulating sncRNAs show specific patterns in MDS and that their expression changes during disease progression, providing a rationale for the potential clinical usefulness of circulating sncRNAs in MDS prognosis. However, monitoring sncRNA levels in total plasma or in the EV fraction does not reflect one another, instead, they seem to represent distinctive snapshots of the disease and the data should be interpreted circumspectly with respect to the type of material analyzed.


Assuntos
Vesículas Extracelulares/metabolismo , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/genética , Pequeno RNA não Traduzido/sangue , Azacitidina/farmacologia , Biomarcadores/sangue , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estimativa de Kaplan-Meier , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Análise Multivariada , Mutação/genética , Síndromes Mielodisplásicas/patologia , Prognóstico , Modelos de Riscos Proporcionais , Edição de RNA/genética , Pequeno RNA não Traduzido/genética , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Resultado do Tratamento
16.
Am J Physiol Renal Physiol ; 318(1): F229-F237, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760769

RESUMO

Long-term peritoneal dialysis (PD) is associated with functional and structural alterations of the peritoneal membrane. Inflammation may be the key moment, and, consequently, fibrosis may be the end result of chronic inflammatory reaction. The objective of the present study was to identify genes involved in peritoneal alterations during PD by comparing the transcriptome of peritoneal cells in patients with short- and long-term PD. Peritoneal effluent of the long dwell of patients with stable PD was centrifuged to obtain peritoneal cells. The gene expression profiles of peritoneal cells using microarray between patients with short- and long-term PD were compared. Based on microarray analysis, 31 genes for quantitative RT-PCR validation were chosen. A 4-h peritoneal equilibration test was performed on the day after the long dwell. Transport parameters and protein appearance rates were assessed. Genes involved in the immune system process, immune response, cell activation, and leukocyte and lymphocyte activation were found to be substantially upregulated in the long-term group. Quantitative RT-PCR validation showed higher expression of CD24, lymphocyte antigen 9 (LY9), TNF factor receptor superfamily member 4 (TNFRSF4), Ig associated-α (CD79A), chemokine (C-C motif) receptor 7 (CCR7), carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), and IL-2 receptor-α (IL2RA) in patients with long-term PD, with CD24 having the best discrimination ability between short- and long-term treatment. A relationship between CD24 expression and genes for collagen and matrix formation was shown. Activation of CD24 provoked by pseudohypoxia due to extremely high glucose concentrations in dialysis solutions might play the key role in the development of peritoneal membrane alterations.


Assuntos
Nefropatias/terapia , Diálise Peritoneal , Peritônio/metabolismo , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Regulação da Expressão Gênica , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Masculino , Pessoa de Meia-Idade
17.
Cancer Biomark ; 25(1): 43-51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30988238

RESUMO

BACKGROUND: Aberrant epigenetic patterns are a hallmark of acute myeloid leukemia (AML). Mutations in profound epigenetic regulators DNMT3A and IDH1/2 often occur concurrently in AML. OBJECTIVES: The aim was to analyze DNA methylation, hydroxymethylation and mRNA expression profiles in AML with mutations in DNMT3A and IDH1/2 (individually and in combinations). METHODS: Infinium MethylationEPIC BeadChip (Illumina) covering 850,000 CpGs was utilized. The validation of hydroxy-/methylation data was done by pyrosequencing. HumanHT-12 v4 Expression BeadChip (Illumina) was used for expression examination. RESULTS: Hierarchical clustering analysis of DNA hydroxy-/methylation data revealed clusters corresponding to DNMT3A and IDH1/2 mutations and CD34+ healthy controls. Samples with concurrent presence of DNMT3A and IDH1/2 mutations displayed mixed DNA hydroxy-/methylation profile with preferential clustering to healthy controls. Numbers and levels of DNA hydroxymethylation were low. Uniformly hypermethylated loci in AML patients with IDH1/2 mutations were enriched for immune response and apoptosis related genes, among which hypermethylation of granzyme B (GZMB) was found to be associated with inferior overall survival of AML patients (P= 0.035). CONCLUSIONS: Distinct molecular background results in specific DNA hydroxy-/methylation profiles in AML. Site-specific DNA hydroxymethylation changes are much less frequent in AML pathogenesis compared to DNA methylation. Methylation levels of enhancer located upstream GZMB gene might contribute to AML prognostication models.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Idoso , Idoso de 80 Anos ou mais , DNA Metiltransferase 3A , Feminino , Perfilação da Expressão Gênica , Granzimas/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico
18.
Transplantation ; 103(5): 909-917, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30801516

RESUMO

BACKGROUND: Accommodation in ABO-incompatible (ABOi) transplantation and subclinical antibody-mediated rejection in HLA-incompatible (HLAi) transplantation share several morphological similarities. Because the clinical long-term outcomes differ, we hypothesized different molecular processes involved in ABOi transplantation and subclinical antibody-mediated rejection. METHODS: Using Illumina Human HT-12 v4 Expression BeadChips, the whole transcriptome was evaluated based on 3-month protocol C4d+ biopsies in otherwise stable ABOi and HLAi kidney grafts, as well as in C4d-negative HLA-compatible grafts exhibiting normal histological findings. Top differently regulated genes were further validated using real-time quantitative polymerase chain reaction in another patient cohort and complement regulatory proteins by immunohistochemistry. RESULTS: In the case of genes involved in immune response-related biological processes, ABOi and HLAi cohorts had similar transcriptomic profiles to C4d-negative controls. The majority of deregulated genes in the ABOi and HLAi groups consisted of metallothioneins and epithelial transporter genes. Increased expression of epithelial transporters (SLC4A1, SLC4A9, SLC17A3, SLC12A3, and SLC30A2) and class 1 metallothioneins (MT1F, MT1G, and MT1X) in HLAi transplantation was validated by real-time quantitative polymerase chain reaction. In comparison to controls, both incompatible cohorts were characterized by the upregulation of intrarenal complement regulatory genes. CD46 and CD59 transcripts were increased in the ABOi cohort, whereas CD46 solely in HLAi group, and CD59 protein expression was similar in both incompatible groups. CONCLUSIONS: Several epithelial transporters and metallothioneins discriminate subclinical antibody-mediated rejection in HLAi transplantation from accommodation in ABOi transplantation, which suggest different involved downstream mechanisms and increased risk of injury in HLAi settings. Metallothioneins with their antioxidative properties may help to attenuate the inflammation response induced by donor-specific anti-HLA antibody binding.


Assuntos
Incompatibilidade de Grupos Sanguíneos/diagnóstico , Rejeição de Enxerto/diagnóstico , Transplante de Rim/efeitos adversos , Sistema ABO de Grupos Sanguíneos/imunologia , Adulto , Idoso , Aloenxertos/imunologia , Aloenxertos/metabolismo , Aloenxertos/patologia , Biomarcadores/metabolismo , Biópsia , Incompatibilidade de Grupos Sanguíneos/imunologia , Incompatibilidade de Grupos Sanguíneos/patologia , Feminino , Seguimentos , Perfilação da Expressão Gênica , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto/imunologia , Antígenos HLA/imunologia , Humanos , Isoanticorpos/imunologia , Rim/imunologia , Rim/metabolismo , Rim/patologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Metalotioneína/metabolismo , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
19.
Clin Sci (Lond) ; 132(20): 2269-2284, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30287520

RESUMO

Intimal arteritis is known to be a negative prognostic factor for kidney allograft survival. Isolated v-lesion (IV) is defined as intimal arteritis with minimal tubulointerstitial inflammation (TI). Although the Banff classification assesses IV as T cell-mediated rejection (TCMR), clinical, and prognostic significance of early IV (early IV, eIV) with negative C4d and donor-specific antibodies (DSA) remains unclear. To help resolve if such eIV truly represents acute rejection, a molecular study was performed. The transcriptome of eIV (n=6), T cell-mediated vascular rejection with rich TI (T cell-mediated vascular rejection, TCMRV, n=4) and non-rejection histologic findings (n=8) was compared using microarrays. A total of 310 genes were identified to be deregulated in TCMRV compared with eIV. Gene enrichment analysis categorized deregulated genes to be associated primarily with T-cells associated biological processes involved in an innate and adaptive immune and inflammatory response. Comparison of deregulated gene lists between the study groups and controls showed only a 1.7% gene overlap. Unsupervised hierarchical cluster analysis revealed clear distinction of eIV from TCMRV and showed similarity with a control group. Up-regulation of immune response genes in TCMRV was validated using RT-qPCR in a different set of eIV (n=12) and TCMRV (n=8) samples. The transcriptome of early IV (< 1 month) with negative C4d and DSA is associated with a weak immune signature compared with TCMRV and shows similarity with normal findings. Such eIV may feature non-rejection origin and reflect an injury distinct from an alloimmune response. The present study supports use of molecular methods when interpreting kidney allograft biopsy findings.


Assuntos
Arterite/genética , Rejeição de Enxerto/genética , Transplante de Rim/métodos , Transcriptoma , Túnica Íntima/metabolismo , Adulto , Idoso , Aloenxertos , Estudos de Casos e Controles , Estudos Transversais , Feminino , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Rejeição de Enxerto/diagnóstico , Humanos , Masculino , Estudos Retrospectivos , Túnica Íntima/patologia
20.
Cells ; 7(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223454

RESUMO

The DLK1⁻DIO3 region contains a large miRNA cluster, the overexpression of which has previously been associated with myelodysplastic syndromes (MDS). To reveal whether this overexpression is epigenetically regulated, we performed an integrative analysis of miRNA/mRNA expression and DNA methylation of the regulatory sequences in the region (promoter of the MEG3 gene) in CD34+ bone marrow cells from the patients with higher-risk MDS and acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), before and during hypomethylating therapy with azacytidine (AZA). Before treatment, 50% of patients showed significant miRNA/mRNA overexpression in conjunction with a diagnosis of AML-MRC. Importantly, increased level of MEG3 was associated with poor outcome. After AZA treatment, the expression levels were reduced and were closer to those seen in the healthy controls. In half of the patients, we observed significant hypermethylation in a region preceding the MEG3 gene that negatively correlated with expression. Interestingly, this hypermethylation (when found before treatment) was associated with longer progression-free survival after therapy initiation. However, neither expression nor methylation status were associated with future responsiveness to AZA treatment. In conclusion, we correlated expression and methylation changes in the DLK1⁻DIO3 region, and we propose a complex model for regulation of this region in myelodysplasia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...